
A Volume of Revolution Problem 

The parametric equations 𝑥 = 4 + 2 sin 𝑡 and  𝑦 = 6 + cos 𝑡,  for 0 ≤ 𝑡 < 2𝜋,  define an ellipse. 

Find the volume of the solid generated when the ellipse is rotated 2𝜋 radians about the x axis. 
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Integrals of odd powers of cos 𝑡,  cos 2𝑡  (or sin 𝑡 etc.) between 0 and 2𝜋 evaluate to 0 and so  

𝑉 = 2𝜋 ∫ 12 cos2 𝑡  𝑑𝑡.
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The same result can be obtained from the equation of the curve in Cartesian form. 
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= ⋯ = 24𝜋2. 

Another method is to make use of Pappus’ theorem which gives the volume as the area enclosed by 

the curve (which does not cross the x axis) multiplied by the distance travelled by the centroid.  The 

ellipse has an area of 2𝜋 and the centroid travels 12𝜋, on a circular path with radius 6 and so the 

volume is 24𝜋2. 

 


