A Volume of Revolution Problem

The parametric equations $x = 4 + 2 \sin t$ and $y = 6 + \cos t$, for $0 \le t < 2\pi$, define an ellipse. Find the volume of the solid generated when the ellipse is rotated 2π radians about the x axis.

$$V = \pi \int_0^{2\pi} y^2 \frac{dx}{dt} dt$$
$$\frac{dx}{dt} = 2\cos t$$
$$V = 2\pi \int_0^{2\pi} \cos t \ (6 + \cos t)^2 dt$$
$$= 2\pi \int_0^{2\pi} (36\cos t + 12\cos^2 t + \cos^3 t) dt$$

Integrals of odd powers of $\cos t$, $\cos 2t$ (or $\sin t$ etc.) between 0 and 2π evaluate to 0 and so

$$V = 2\pi \int_0^{2\pi} 12\cos^2 t \ dt.$$

 $\cos^2 t = \frac{(\cos 2t + 1)}{2}$

$$V = 12\pi \int_0^{2\pi} (\cos 2t + 1) dt$$
$$V = 12\pi \int_0^{2\pi} 1 dt = 24\pi^2$$

The same result can be obtained from the equation of the curve in Cartesian form.

$$V = \pi \int_{2}^{6} \left(\left(6 + \sqrt{1 - \left(\frac{x-4}{2}\right)^{2}} \right)^{2} - \left(6 - \sqrt{1 - \left(\frac{x-4}{2}\right)^{2}} \right)^{2} \right) dx$$
$$= 24\pi \int_{2}^{6} \sqrt{1 - \left(\frac{x-4}{2}\right)^{2}} dx$$
$$24\pi \int_{2}^{6} \sqrt{1 - \left(\frac{x-4}{2}\right)^{2}} dx = \dots = 24\pi^{2}.$$

Another method is to make use of Pappus' theorem which gives the volume as the area enclosed by the curve (which does not cross the x axis) multiplied by the distance travelled by the centroid. The ellipse has an area of 2π and the centroid travels 12π , on a circular path with radius 6 and so the volume is $24\pi^2$.